TECHNOLOGY: *BioMeg-Microbial Inoculant*

Biostimulant for improved yield and nutritional quality of sweet potato and purple yam

Edgardo E. Tulin, Anabella B. Tulin, Maria Theresa P. Loreto, Ea Kristine Clarisse B. Tulin, Jo Jane D. Atok, Miguel Francisco B. Abulencia, Katrina Dela Fuente, Christian Art L. Chua, April Joy S. Vergara Philrootcrops, Visayas State University **TECHNOLOGY:** *BioMeg-Microbial Inoculant*

Technology: BioMeg microbial inoculant

DESCRIPTION:

BioMeg is a microbial inoculant containing **Bacillus megaterium** as the active ingredient. Its subsequent nutrient uptake by plants with the use of the product in the **presence of macrofertilizers** was found to **increase yield and improve nutritional quality**. Only a trace amount of BioMeg is applied a few days after planting to effect the desired benefit. The expected yield increase in crop production will translate into a corresponding **increase in income** and provide a **sustainable livelihood** for our farmers.

TANGIBLE OUTPUT(S):

Microbial Inoculant for production of sweet potato and purple yam

STATUS:

The technology can be adopted by the Department of Agriculture. It will be distributed to sweet potato and purple yam farmers through the technology brochures and guidebooks. Training will be conducted in order to capacitate the farmers in their understanding and application of the principles and practices in sweet potato and purple yam production more specifically in the application of BioMeg.

TECHNOLOGY FEATURE:

- · Low-cost
- Environment-friendly
- · Organic-based
- · Improves yield, nutritional quality, and income
- Use of locally sourced materials
- More sustainable

FARM-LEVEL APPLICATION:

2 Field trials (area less than 1 ha)

Application

APPLICATION TABLE

Crop's type	Age of crop	NPK Usage/ plant	Bioinoculant Usage/ plant	Frequency
Sweet potato	2 weeks after planting	60-60-60 kg/ha	12 kg/ha	Once
Purple yam	1 month after planting 1 month after first application	75-25-75 kg/ha 75-25-75 kg/ha	6 kg/ha 6 kg/ha	Twice

Way of Application

Storage: Store in cool dry place and away from direct sunlight or heat. *Type of Soil:* Neutral soil (pH 6.5-7.5)

- 1. Make four holes around each plant having a distance of 5 cm from the soil surface.
- Add the exact amount for each corresponding fertilizer treatment (as shown in Application table). Two holes for the bioinoculant and the other 2 holes for the complete fertilizer. Equally divide it into the holes.
- 3. Cover the holes with soil to prevent the volatilization of N-containing fertilizers.

Production Cost

Utilities

Total

Electricity

Laborer (3man days)

Water

Unit Price Amount Type ltem (Php) (Php) 8.00 5/Kg Ipil-ipil Leaves, 1.67Kg Peeling, Cassava 4.00 1/Kg 3.37Kg Empty water container 288.00 Material Cost 95/pc (recyclable) used as incubator. 3pcs Pure culture stock 100/tube 250.00 200.00 Other lab supplies 200/set-up Gas for substrate 100.00 100/set-up sterilization

Unit price: PhP 218.00/ kg bioinoculant

100.00

50.00

1,050.00

2,050.00

100/set-up

50/set-up

350/day

Basis: 5 kg Dried Product

- ✓ Marketable Yield
- ✓ Cost-benefit Analysis
- Anthocyanin (Nutritional value)

Marketable Yield

Comparison of sweet potato tuber yield (kg/ha) grown under neutral soil

Comparison of purple yam tuber yield (kg/ha) grown under neutral soil

Cost-benefit Analysis

Sweet potato

Treatment	Plant population	Potential total yield (Kg/ha)	Selling Price/kg, PhP	Gross Income, PhP	Total Production Cost, PhP	Net Income, PhP
No fertilizer	40,000	3,776	30	113,283	64,000	49,283
NPK	40,000	4,257	30	127,709	73,178	54,531
NPK + 12 kg microbial inoculant/ha	40,000	9,106	30	273,176	77,978	195,198

Cost-benefit Analysis

Purple yam

Treatment	Plant population	Potential total yield	Selling Price/kg, PhP	Gross Income, PhP	Total Production Cost, PhP	Net Income, PhP
No fertilizer	30,000	4,185	60	251,089	245,250	5,839 b
NPK	30,000	8,770	60	526,222	266,798	259,424
NPK + 12 kg microbial inoculant/ha	30,000	10,551	60	633,054	271,598	361,455

Anthocyanin

No fertilizer

Sweet Potato

Purple Yam

NPK + 12kg/ha microbial inoculant

IMPACT:

Global Competitiveness

The use of this technology would significantly increase the production of sweet potato and purple yam. This would provide an adequate supply of sweet potato and purple yam for the development of their local value chains and industries that will provide sustainable livelihood or income opportunities to sweet potato and purple yam farmers, processors, and other stakeholders in the locality. The generated products can also be exported given the rising popularity of sweet potato and purple yam worldwide.

Food Security

The subsequent nutrient uptake by sweet potato and purple yam with the use of the technology in the presence of macrofertilizers was found to increase yield and improve nutritional quality. Only a trace amount is applied a few days after planting to effect the desired benefit. The expected yield increase in crop production would ensure sustainable food security.

IMPACT:

Climate Change

The technology that will be generated in this project uses sweet potato and purple yam enriched naturally by nutrients through proper nutrient management using natural microorganisms present in the soil. These crops grow in almost all soil types and are found to withstand the adverse effects of climate change. Since it can be easily cultivated, the crops are highly accessible to farmers.

Environmental Protection

This technology help increase the yield of purple yams without damaging the environment. Realizing the deteriorative effects of synthetic and chemical fertilizers in improving soil fertility, the technology employs a useful microorganism responsible for the continuous availability of nutrients from natural sources to revive soil health and improve soil quality.

Conclusions

- The release of micronutrients and subsequent uptake by plants with the use of the product in the presence of macrofertilizers was found to **increase yield and improve nutritional quality**.
- Only a trace amount of BioMeg is applied a few days after planting to effect the desired benefit.
- The expected yield increase in the presence of micronutrients in crop production will translate into a corresponding increase in income and provide a sustainable livelihood for our farmers.

IEC Materials

Visayan short and long brochure

English short and long brochure

Brochure

BioMeg

Mega sa SUSTANSYA!

ABOUT The Product Contents Organic Substrates Ground ipil-ipil leaves (N-source) and Cassava Peeling (C-source) with 2:1 Carbon Nitragen Rettin

Bacillus megaterium A rod-shaped, fast-growing spore-forming

Production Cost

Туре	Item	Unit Price (Php)	Amount (Php)
Material Cost	ipiHipiHanes, 1.67Kg	5/Kg	8.0
	Cassava Peeling, 3.37Kg	1/Kg	4.0
	Empty water container used as incubator, 3pcs	95/pc	288.0
	Pure culture stock	100/h/be	250.0
	Other lab supplies	200/set-up	200.0
Utilities	Gas for substrate sterilization	100/set-up	100.0
	Electricity	100/wet-up	100.0
	Water	50/set-up	50.0
	Laborer (3man days) 350/day		1,050.0
Total	2,050.0		

APPLICATION

Crop's type		NPK	Biolegentant	Frequen	
	Age of crop	Usage/ plant	Usage/plant		
Sweet potato	2 weeks after planting	60-60-60 kg/ha	12 kg/hs	Once	
Purple yam	1 month after planting	75-25-75 kg/ha	6 kg/ha	Twice	
	1 month after	75-25-75	6 kg/ha		

Ways of Application

Storage: Store in cool dry place and away from direct sunlight or heat

Type of soil: Neutral soil (pH 6.5 to 7.5)

1. Make four holes around each plant having a distance of 5 cm from the soil surface.

- 2. Add the exact amount for each corresponding fertilizer treatment (as shown in Application table). Two holes for the bioinoculant and the other 2 holes for the complete fertilizer. Equally divide it into the holes.
- 3. Cover the holes with soil to prevent the volatilization of N-containing fertilizers.

Back

BioMeg is a micronutrient-mobilizing bioinoculant containing Bacillus megaterium as the active ingredient. The release of micronutrients and subsequent uptake by plants with the use of the product in the presence of macrofertilizers was found to increase yield and improve nutritional quality. Only a trace amount of BioMeg is applied a few days after planting to effect the desired benefit. The expected yield increase in the presence of micronutrients in crop production will translate into a corresponding increase in income and provide a sustainable livelihood for our farmers.

R. EDGARDO E. TULIN YOU and Design REL JOY 5. VERGARI

Front

IEC Materials

BioMeg Field Guidebook for sweet potato and purple yam production

CD (promotional video)

Thank you.